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The problem of two-dimensional scattering of elastic waves by an elastic inclusion
can be formulated in terms of a domain integral equation, in which the grad-div
operator acts on a vector potential. The vector potential is the spatial convolution of a
Green’s function with the product of the density and the displacement over the domain
of interest. A weak form of the integral equation for the unknown displacement is
obtained by testing it with rooftop functions. This method shows excellent numerical
performance. (© 2000 Academic Press

1. INTRODUCTION

The problem of elastic scattering by an inhomogeneous isotropic object can be formul
in terms of an integral equation for the displacement over the domain of the object. 1
integral equation can be written in aform where a grad-div operator acts on a vector potel
The vector potential is the spatial convolution of a Green’s function with the product of
density and the displacement over the domain of interest.

Numerous methods have been developed in electromagnetics to solve similar dol
integral equations. Among those, we choose to implemerit-ggace methods, since we
believe that methods of this type can be used for the solution of three-dimensional probl
due to their storage and computational efficiency.

According to [25] the first method for solving the electric field integral equation over tl
domain of a dielectric object was developed by Richmond [16, 17]. He used the met
of moments with pulse expansion functions and point matching. The method of mome
however, is computationally expensive since an inversion of a large matrix is necessan
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be more precise, it is known that direct solution of a system of equations in the metho
moments need%N3 computations, wherl is the number of unknowns. In our method we
do not solve a system and our computation time s N log(N), wheren is the number
of iterations.

Bojarski [4] introduced th&-space method, in which a fast Fourier transform algorithr
for computation of the spatial convolution that occurs in the integral equation reduced
storage and computation time. As a result, the conjugate gradient method combined
the fast Fourier transform (FFT) was developed [19, 21].

However, Borupet al. [5] showed that in the conjugate gradient FFT method seriol
inaccuracies are observed for cylindrical objects in the TE case, and they adequatel
plained the source of the problem. In 1990 Joachimowicz and Pichot [9] introduce:
domain integral equation using generalized functions. Their approach improved the e;
ing numerical results. However, some problems were still observed. For completenes:
refer the interested reader to [6, 18, 20]. In order to avoid these difficulties we use a w
form of the conjugate gradient FFT method by testing the integral equation with roof
functions. Subsequently, a suitable expansion procedure of the vector potential in th
tegral equation is carried out. The grad-div operator acting on the vector potential of
integral equation is integrated analytically over the object domain. Because of our sin
convolution structure the computational time has been significantly reduced. This apprc
was first introduced by Van den Berg and Zwamborn [24, 25] in electromagnetics and ¢
very accurate numerical results.

We choose 2-D formulations to test our algorithm because they are less computatior
involved than 3-D ones.

The numerical results presented are compared with analytical solutions, and it is den
strated that the present method shows excellent results. The first attempt at compa
between the approximate and analytical solution was made by Banaugh in his Ph.D. tt
[2]; see also [3]. Banaugh used boundary integral equations expressed in terms of a ¢
displacement potentials. The equations are solved by means of finite difference appl
mations to the contour integrals. The resulting scattered field was found to be in excel
agreement with that obtained from the series solution. In this way, Banaugh has obta
numerical values for the surface potentials in the case of two-dimensional rigid and e
tic cylinders of arbitrary cross section. However, the numerical results presented invol
only small wave numbergkf = 1, ks = 2). Calculations for larger values khave not been
executed since the necessary increase in matrix size results in excessive computa
effort [3].

2. NOTATION AND STATEMENT OF THE PROBLEM

Let C be a closed, Lyapunov curve in?lit the sense of Kupradze [11], on which a
Holder continuous normal exists everywhere. Detand D, denote the regions interior and
exterior to C. Erect a Cartesian coordinate system with origi® iand denote points in iR
asx = (Xg, X2) andx’ = (X1, X3). Assume thaD; is filled with an inhomogeneous elastic
material characterized by the constant Lame coefficieratsd ..

Let the source point, belong to domairD.. Letu™ be the displacement field to which
the given source gives rise throughout the doniainwhich is filled with a homogeneous
elastic material, also characterized by the constamaisd ..
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The forward scattering problem is modelled by the following transmission problem (T
For a given incident field™® and zero body forces, determin) such that

A*U(X) + p(X)0?u' (X) =0, X e D (1)
A*UB(X) + pew®U®(X) =0, X € De )
u'(x) =ué(x), xeS 3
Tu'(x) = Tué(x), x€S (4)
usSt = y& — un° is regular inDe in the sense of Kupradze. (5)

Here the real density(x) is piecewise lalder continuous id; . Furthermore, the operator
A* is defined as

= +20)VV —uV x Vx, (6)

and the stress operatbris defined as (Ahner and Hsiao [1])

ouy ad ouy
Tu(x) = {[(k + ZM)— + Aa] cogf, X1) + {al:( + 8] cogf, xz)}

+ { [% + %} cog, X1) + {Ag— +(+2 )—} cog(f, Xz)} (7)

0X2 0X1

It can be shown [10, 13] that the above problem is governed by the integral equation
ue) = U™ + o / (p(X) = pU(X) - T(x, X) dve,  x € IR, ®)
Dj

wherel'(x, X') is the Green'’s displacement tensor and is given by Morse and Feshbach
as

roox) = {img [ lx =X~ s =X D] | )

wherekp, ks are the wave numbers for the P and the S wave, respectively.

The uniqueness of the solutionix) to this problem can be found in Kupradze [11] anc
Hahner [8].

Inserting Eq. (9) into (8) yields

u"(x) = u(x) — k2 /D | %Hél)(kgx — XM X)HUX) doy
—VV. / i—l[Hél)(ks|x —X]) = HEP (kplx — X D] MxXHu(X) dvy, (10)

where

p(X') — pe

Pe

M) = (11)
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The integral equation above now takes the form

ul'® = uy — By, (X1, X2) € Dy, (12)

= Uy — By, (X1, X2) € Dj, (13)

uine
where the component; andB; of the vectorB are given by

B, = kszcl + al[alAl + agAg], (14)
By = k2Cp + 95[01 A1 + 92A9], (15)

in which 9, denotes the partial derivative with respeckjo« = 1, 2 and the vector poten-
tials,

A = {A1(X1, X2), Ax(X1, X2)}, C = {C1(X1, X2), Ca(X1, X2)}, (16)

are given by
A(Xq, X2) = / [ p(X1 — X1, X2 — X9) M (X7, Xp)U(Xq, Xp) dxy dX5,  (17)
(x1.%5)eD;
where

HeY (kslx — X1) — HgY (Kplx — X'])] (18)

i
Ts p(X1 — X, Xo — Xp) = Z[

and
C(X1, X2) = / [s(X1 — Xq, X2 — Xo) M(Xq, Xp)U(X7, X5) dXq dX5, (19)
(X1,X5)€D;
where

/ I !
Fs(a = X4, % = Xp) = 7 HS® (kslx — X'|). (20)

3. THE DISCRETIZATION PROCEDURE

We now proceed with the discretization by assuming that the doaima rectangular
domain with boundaries along ttxg andx, directions. We use a rectangular mesh with ¢
grid width of Ax; in thex; direction andAx, in thex, direction.

The rectangular subdomains created are given by

2
Dmn = {(X1, X2) € IR® | X1;m—1 < X1 < Xy;m, X2:n—1 < X2 < Xon}, (21)
where

X]_;m:X1;Mfl+mAX1, mzl,---,M, (22)

Xo:n = X2:N—1 + NAXa, n=1,...,N, (23)
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in which x1.¢ is the lowerx; bound of the contrasting domald;, while x.o is its lower

X2 bound. We assume that the boundary of the domain is located in the embedding w
M =0. It is understood that this is possible since the scattering domain can be extet
with a zero contrast functiaM. In each rectangular subdomaim, » with center Ki.m—1/2,
X2.n—1/2) We assume the real contrast to be constant with valugtm n.

We define two sequences of basis functions over the doBaia sequencerrﬁ},)n (X1, X2)
that is continuous in thg; direction and may jump at discontinuities of the material distri
bution in thex, direction, and a sequenqén%}](xl, Xo) that is continuous in the, direction
and may jump at discontinuities of the density distribution inxhdirection; see [22]. The
most simple basis functions that meet these requirements are the rooftop functions an
defined as [13, 25]

Y (XL, X2) = A(Xy — X | AXe, AXy) TT(X2 — Xain-1/2 | AXz), (24)
form=1....,M—1landn=2,...,N -1, and
Y2 (X1, X2) = TT(X1 — Xzm-1/2 | AX1) A(Xz — Xzin | AXz, AXp), (25)

form=2,...,M—1andn=1,..., N—1.In the aboveA (X — X1.m | AXs, AXy) is the
triangle function with support&x; andIT(Xy — X1;m—1/2 | AXq) is the pulse function with
supportAx;. We further define

Uimn = U1(X1;m, X2;n—1/2)7 (26)
Uiln;f’n,n = Uilnc(Xl;m, X2n-1/2) (27)
Bimn = Bi(Xt:m, X2in-1/2), (28)
Mmiron = %Mm,n + %Mm+1,n, (29)

form=1,....,M—1landn=2,...,N -1, and

Uz;mn = Uz(Xl;m—l/z, X2;n), (30)
upe » = U3 (Xum_1/2, X2:n ) (31)
Uz;mn = U2(Xl;m—l/2» Xz;n), (32)
Mmnt2 = %Mm,n + %Mm,n—t—l» (33)

form=2,..., M—1andn=1,...,N-1.
Then Egs. (12)—(13) are discretized as

Utmn — Bymn = Uiln;(r:n,n, (34)

U2;m.,n - B2;m,n = u;“r:nn (35)
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We now replace Egs. (14)—(15) by their weak versions

fXG(Dm,nUDm+1,n) Wrgq:l:)n(xl’ XZ){kSZCl + 81[81A1 + 8ZAZ]} dv

Bl;m,n = s
fXE(Dm,nUDerLn) 1/fr£r%)n (Xl’ X2) dV

B fXE(DmAnUDm,n+1) V2 (X1, X2) {KEC2 + 2[01 A1 + 32 A2] } dv

2;m,n — s

2
fxe(Dm,nUDm,n+l) wr(n’)n(xl’ XZ) dV

while the vector potentiald andC are explanded as
Ai(Xe, X) = Z At pq ¥y (Xa, X2),
P.q
As(X1, X2) = Z Ao, p,q‘ﬁ,(fé (X1, X2).
p.q

Ci(X1, X2) = Y Crpa¥ (e, %),

n.q
Ca(Xg, X2) = Z C2.pq WS&(XL X2).
P.q

We then obtain

M N M N M N
Bimn = Z Z Om.n.p.qCupg + Z Z amn.p.qAsupqt+ Z Z BPm.n, p.aP2p.qs

p=0 gq=1 p=0 gq=1 p=1 gq=0
MoN MoN MoN

Bamn=)_ > hmnpaCapa+ ) D Cmnpalepat Y Y GnnpeAsupa
p=0 gq=1 p=1 g=0 p=0 g=1

where

1 2
gm,n,p,q = éks(fsp,erl + 4(Sp,m + sp,m—l)aq,ns

Am,n,p.q = (AX1)72(5p,m+1 — 28p.m + Sp,m-1)8q,n;

Prn,pg = (Axlez)il(ap,m—l — 8p,m)(8q.n — Sg,n+1)s
1
hm,n,p,q = ékg(aq,n-H + 48q,n + 5q,n—1)5p,m,

Cm,n,p.qg = (AXZ)_z(Sq,n+1 - 2qu,n + 8g,n-1)8p,m>

Omnpg = (AX1AX2) 1 (pmi1 — Spm) (Sgn — Sqn-1),

in which ém n is the Kronecker delta [13].
Subsequently Egs. (42) and (43) become

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
(46)

(47)

(48)
(49)

1
B1;m,n = éksz(cl;m—l,n + 4C1;m,n + Cl;m+1,n) + (Axl)_z(Algm—l,n - 2Al;m,n + Al;m+1,n)

+ (AX1A%) " H(Azmn-1 — Azmn + Azmitn — Aomitn-1),

(50)
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1
Bomn = ék§<cz;m,n_1 4+ 4Comn + Coamnt1) + (AX) 2(Azmn-1 — 2A2mn + Azmni1)
+ (AX1A%) " H(Atm-1n — Atmn + Atmnst — ALm_1ns1)- (51)

We now need to replace the continuous representations of the vector potArdiadsC
by discrete ones. In order to cope with the singularity'gfve use a global representation
consistent with our weak formulation. We integr&e over a circular domain with cen-
ter at the point(Xy;m, X2:n—1/2), and C, over a circular domain with center at the point
(Xm—1/2, X2:n). FOr consistency we repeat the above procedure for the vector potetials
and A, respectively. The radius of the circular patches is taken téubm: % min(AXxq,
AX2). The results are divided by the surface MéAX)Z [16].

After approximating the resulting intergrals by appropriate trapezoidal rules we obta

M—1N-1
Cimn = AX1AX Z Z T2 (Xum — Xums Xain-1/2 — Xaiw—12) Muv+1/2.nUsmrns - (52)

m=1n=2
form=0,...,Mandn=1,..., N,
M—1N-1
Comn = AX1AXp Z Z T2 (Xum-1/2 — Xum—1/2, X2in — Xz ) Mav.vs1/2Uzmn, - (53)
m=2n=1
form=1,...,Mandn=0,..., N,
M—1N-1
Armn = AX1AXp Z Z T2 p(Xt:m = X1, X2:n-1/2 = X2—1/2) Min /20U, (54)

m=1n'=2

form=0,...,Mandn=1,..., N, and

M—-1N-1
Ao.mn = AX1AX Z Z 1—‘;k,p<x1;m—1/2 — X1:m—1/2, X2;n — X2;n’)Mm’n’+l/2U2;m’,n’a (55)
m=2n'=1
form=1,...,Mandn=0,..., N, wherel'{ , andl'{ are the integrals of the correspond-

ing Green'’s function$'s , andI's over the circular patches discussed above and are divid
by the surface arera(%Ax)z. The discrete convolutionS1.mn, Ca.m.n, At:mn @nd Az.mn
can be computed effeciently using FFT routines [15].

4. SOLUTION OF THE PROBLEM

We now substitute Eqgs. (52)—(55) into Eqgs. (42)—(43) and use the results in Egs. (:
(35).
This yields a linear system of equations arm » andu,.m » with known M; i.e.,

LWipg=UrS, p=L....M-1 g=2...N-1 (56)
(LWazpg=UsSy P=2....M-1 g=1...N-1 (57)
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where

M N
(Lu)l; p.g = Uipq — Z Z gp,q,m,ncl;m,n

m=0 n=0
M N M N
Z Z ap.gmnAsmn — Z Z bp.g.mnAzmn, (58)
m=0 n=1 m=1 n=0
forp=1...,M—1andg=2,...,N—1,and
M N
(LW2pg = Uzpg — Y > NpgmnCamn
m=1 n=0

N M N
Z c p.q, m,nAZ;m,n - Z Z dp,q,m,nAl:m,n, (59)

1n=0 m=0 n=1

Mz

3
[

forp=2,...,M—1andg=1,...,N—1,and wheréAy.mn, Azmn, Ci.mn, aNdCa.mn
directly follow from Egs. (52)—(55).

The operator equation given by (56)—(57) will be solved with the aid of the conjugs
gradient method; see [21] and [13, p. 35].

For convenience, the P (dilation) and SV (rotation) components of the two-dimensio
scattered field are introduced [7].

The scattered P component is given by

U = 01U3%00) + U357 (x) X € S. (60)
Consequently the scattered SV component is given by
us®(x) = d1U5%(x) — 3Uu3(x), XxeS (61)

Detailed forms for the above component equations can be found in [13].

5. NUMERICAL RESULTS

In our first numerical example the scatterer was taken to be a circular cylinder of rac
a = 0.35 m and density = 1.3, while the outer medium’s density was 1; see also Fig. !
Hence, the contrast is 0.3. The scatterer is located in the test sQuafis test square

M~ [

FIG. 1. Discretization of the circular cylinder.
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FIG.2. Thereal and the imaginary parts of the P component of the scattered field at the first statjca 8or
ks =6, Err=1072, and 21x 21 subsquares.

was divided into 21x 21 subsquares of. D x 0.1 m?. The wave numbers of the P-waves
and the SV-waves atg, = 3, ks = 6, respectively. This means that the sidelength of th
test square was equal to about one wavelength for the P-waves and two wavelengths fi
SV-waves in the exterior medium. We excite our object by either P-waves or SV-waves.
object will scatter both P-waves and SV-waves. The measurement s@neaechosen to
be a circle with a radius of 3 m. Twenty-nine statiods=£ 29) were located uniformly on
this circle, with each station serving successively as a line source and all stations actir
receivers. The DFTs are efficiently computed using FFT algorithms [15].

In Figs. 2 and 3 we present the real and the imaginary parts of the P and SV compor
of the scattered field, respectively. The tolerance in the residual error norm is taken t
1%. Comparison with the analytical solution—see [23] and [13]—is made, and it follo
that a tolerance of 1% in the residual norm is insufficient.

We now repeat the above numerical experiment but this time for SV wave incidence
Figs. 4 and 5 we have recorded the real and imaginary parts of the P and SV compor
of the scattered field, respectively. Again comparison with the exact solution is made
follows that the above tolerance is also insufficient.

We now repeat the above numerical experiment but this time with tolerance in the resi
norm of 0.1%. Comparison with the analytical solution, which is made in Figs. 6-9, shc
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FIG. 3. The real and the imaginary parts of the SV component of the scattered field at the first station
kp =3, ks =6, Err=10"2, and 21x 21 subsquares.
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FIG. 10. The real and imaginary parts of the P and SV component of the scattered field, respectively, a
first station fork, = 3, ks = 6, contrast 6.3, Er= 10°%, and 41x 41 subsquares.

excellent numerical results for both kinds of wave incidence. The above tolerance is achi
with only six iterations. We can now state that a tolerance of 0.1% is sufficient for t
same mesh since repeating the present experiment with tolerance of 0.01% yields ider
numerical results.

We now continue our numerical experiments by considering a problem with same
ometry as the previous one, but with higher contrast. Assume now that the density of
scatterer is now increased po= 7.3 and hence the contrast is 6.3. We excite our obje
by a P-wave. It turns out that division of our domain inx221 subsquars is not suffi-
cient, so we increase their number tox441. For brevity in Fig. 10 we present only the
real and imaginary parts of the P and SV components of the scattered field, respecti
As it was expected the number of iterations has now been significantly increased.
worthwile to point out that when the contrast was 0.3, only seven iterations were eno
to achieve the desired accuracy (%)) but now this number has been increased to 92; se
Fig. 11. It is hence observed, that increase in the value of the contrast results to a sif
icant increase in the iteration number. In Fig. 12 we show in a log—log scale the grapl
lUapprox — Uexactloo (WhereUapprox and Uexact are the P-components of the scattered fielo
for the approximate and exact solution respectively) with respect to the mesh size,
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RM.S Error
3
T
‘
L

- L L L L L M

0 10 20 30 40 50 60 70 80 90 100
Number of lterations

FIG. 11. Comparison between the number of iterations for two different values of the contrast.
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contrast=6.3

107 contrast=3

Ertor in approximation

1071 =
10 10
mesh size

FIG. 12. Plot of [|Uapprox— Uexacil With respect to the mesh size. Top line has slope 2.3; bottom line has slo
3.6.

it follows that the order of numerical convergence decreases for increasing values of
contrast.

We now continue our numerical experiments by considering a problem with same
ometry as the previous one, but with larger wave numbers. Namely, let the wavenum
of the P-waves and SV-waves now lke= 6, ks = 12 and the density of the scatterer to be
againp = 1.3. We first excite our object by a P-wave. We divide our test domain first
21 x 21 subsquares of Dx 0.1 n? and then to 4k 41 subsquares of0466x 0.0466 n¥.
For brevity in Fig. 13 we present only the real parts of the P and SV components of
scattered field. It is observed that as the number of discretization points becomes large
approximation is improved. The same thing was also observed, for the real parts of tl
and SV components of the scattered field. The number of iterations is also increased
7 (ko =3,ks=6) to 16.

Hence from the above experiments we can conlude that the order of convergence o
method decreases, for increasing values of the contrast and size of the object. Same be!
as in the P-wave incidence case is observed, if we choose to excite the object by an inc
SV wave.

INCIDENT P WAVE (29 stations) INCIDENT P WAVE (29 stations)

- Exact
--41x41 subsquares
x21x21 subsquares

-Exact

x 21521 subsquares
- 41x41 subsquares

Real part of the scafiered P component
@
Real part of the scatiered SV component

15
0

15 s
Source number Source number

FIG.13. The real parts of the P and SV component of the scattered field at the first statigr=fér ks = 12,
and Err=1073.
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6. CONCLUSIONS

We have presented a weak formulation of the conjugate gradient FFT method for ele
scatterers. It is observed that the present weak form of the conjugate gradient FFT me
for the two-dimensional problem yields excellent agreement with the analytical results
the test problems. Modeling the curved boundaries using a rectangular mesh seems
feasible and discretization errors tend to vanish for increasingly finer discretizations. -
simple convolution structure of the vector potential avoided matrix—vector multiplicatio
in the spectral domain. We only have matrix—vector multiplications in the spatial dome
but these are over the domain of the elastic object only. That means that the comput:
time of our method is even less than the computation time of the conjugate gradient |
methods discussed in the Introduction.

It is worthwile to mention that triangular discretization with linear expansion functior
would give a more accurate result with the same mesh sizes, but the simplicity of
convolution structure of the operator will be lost, and FFT can no longer be used. Wit
finer discretization of the rectangular domains (with substantially less computation ti
than using triangular discretization) the same accuracy is achieved.

The present method can provide data which can be used for the solution of the cc
sponding inverse problem [14]. Future work should also be directed toward extending
method to three-dimensional problems, but this has yet to be done.
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